1 视频显著性检测模型
模型名 | 论文名 | 是否开源 | Github |
---|---|---|---|
DeepVS | DeepVS: A Deep Learning Based Video Saliency | ||
ACLNet | Revisiting Video Saliency Prediction in the Deep Learning Era | 是 | https://github.com/wenguanwang/DHF1K |
STRANet | Video Saliency Prediction Using Spatiotemporal Residual Attentive Networks | 是 | https://github.com/ashleylqx/STRA-Net |
SalEMA | Simple vs complex temporal recurrences for video saliency prediction | 是 | https://github.com/Linardos/SalEMA |
TASED-Net | TASED-Net: Temporally-Aggregating Spatial Encoder-Decoder Network for Video Saliency Detection | 是 | https://github.com/MichiganCOG/TASED-Net |
SalSAC | SalSAC: A Video Saliency Prediction Model with Shuffled Attentions and Correlation-Based ConvLSTM | ||
UNISAL | Unified Image and Video Saliency Modeling | 是 | https://github.com/rdroste/unisal |
ViNet | ViNet: Pushing the limits of Visual Modality for Audio-Visual Saliency Prediction | 是 | https://github.com/samyak0210/ViNet |
HD2S | Hierarchical Domain-Adapted Feature Learning for Video Saliency Prediction | 是 | https://github.com/perceivelab/hd2s |
STA3D | STA3D: Spatiotemporally attentive 3D network for video saliency prediction | ||
ECANet | ECANet: Explicit cyclic attention-based network for video saliency prediction | ||
TSFP-Net | Human Vision Attention Mechanism-Inspired Temporal-Spatial Feature Pyramid for Video Saliency Detection | ||
STSANet | Spatio-Temporal Self-Attention Network for Video Saliency Prediction | ||
VSFT | Video Saliency Forecasting Transformer | ||
GFNet | GFNet: gated fusion network for video saliency prediction | 是 | https://github.com/wusonghe/GFNet |
TinyHD | TinyHD: Efficient Video Saliency Prediction with Heterogeneous Decoders using Hierarchical Maps Distillation | 是 | https://github.com/feiyanhu/tinyHD |
HFTR-Net | Accurate video saliency prediction via hierarchical fusion and temporal recurrence | ||
TMFI-Net | Transformer-Based Multi-Scale Feature Integration Network for Video Saliency Prediction | 是 | https://github.com/wusonghe/TMFI-Net |
UniST | UniST: Towards Unifying Saliency Transformer for Video Saliency Prediction and Detection | ||
MSFF-Net | Multi-Scale Spatiotemporal Feature Fusion Network for Video Saliency Prediction | ||
OFF-ViNet | OFF-ViNet: Optical Flow-Based Feature Warping ViNet for Video Saliency Prediction Considering Future Prediction | ||
TempVST | The Visual Saliency Transformer Goes Temporal: TempVST for Video Saliency Prediction | ||
THTD-Net | Transformer-based Video Saliency Prediction with High Temporal Dimension Decoding |
本文作者:StubbornHuang
版权声明:本文为站长原创文章,如果转载请注明原文链接!
原文标题:总结目前已发表的视频显著性检测模型
原文链接:https://www.stubbornhuang.com/3101/
发布于:2024年10月30日 14:29:03
修改于:2024年10月30日 14:29:03
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。
评论
50