1 torch.cat参数详解与使用
1.1 torch.cat
1.函数形式
torch.cat(tensors, dim=0, *, out=None) → Tensor
2.函数功能
在指定的维度串联指定Tensor序列,所有Tensor都必须具有相同的形状(连接维度除外),或者Tensor为空。
torch.cat可以看作是torch.split或者torch.chunk的反操作。
3.函数参数
- tensors:Tensor序列,除cat的维度形状可以不同之外,输入的Tensor必须类型相同且形状相同
- dim:int类型,Tensor序列连接的维度
4.函数返回值
返回串联好的Tensor
1.2 torch.cat的使用
1.2.1 torch.cat串联一维Tensor序列
import torch
if __name__ == '__main__':
tensor1 = torch.tensor([1,2,3,4])
tensor2 = torch.tensor([5,6,7,8])
tensor3 = torch.tensor([9,10,11,12])
tensor4 = torch.tensor([13,14,15,16])
output0 = torch.cat([tensor1,tensor2,tensor3,tensor4],dim=0)
print(output0)
输出
tensor([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16])
1.2.2 torch.cat串联二维Tensor序列
import torch
if __name__ == '__main__':
tensor1 = torch.tensor([1,2,3,4]).view(2,2)
tensor2 = torch.tensor([5,6,7,8]).view(2,2)
tensor3 = torch.tensor([9,10,11,12]).view(2,2)
tensor4 = torch.tensor([13,14,15,16]).view(2,2)
output0 = torch.cat([tensor1,tensor2,tensor3,tensor4],dim=0)
output1 = torch.cat([tensor1, tensor2, tensor3, tensor4], dim=1)
print('torch.cat dim=0:{0},{1}'.format(output0,output0.shape))
print('torch.cat dim=1:{0},{1}'.format(output1,output1.shape))
输出
torch.cat dim=0:tensor([[ 1, 2],
[ 3, 4],
[ 5, 6],
[ 7, 8],
[ 9, 10],
[11, 12],
[13, 14],
[15, 16]]),torch.Size([8, 2])
torch.cat dim=1:tensor([[ 1, 2, 5, 6, 9, 10, 13, 14],
[ 3, 4, 7, 8, 11, 12, 15, 16]]),torch.Size([2, 8])
1.2.3 torch.cat串联三维Tensor序列
import torch
if __name__ == '__main__':
tensor1 = torch.arange(0,8).view(2,2,2)
tensor2 = torch.arange(8,16).view(2,2,2)
tensor3 = torch.arange(16,24).view(2,2,2)
tensor4 = torch.arange(24,32).view(2,2,2)
output0 = torch.cat([tensor1,tensor2,tensor3,tensor4],dim=0)
output1 = torch.cat([tensor1, tensor2, tensor3, tensor4], dim=1)
output2 = torch.cat([tensor1, tensor2, tensor3, tensor4], dim=2)
print('torch.cat dim=0:{0},{1}'.format(output0,output0.shape))
print('torch.cat dim=1:{0},{1}'.format(output1,output1.shape))
print('torch.cat dim=2:{0},{1}'.format(output2,output2.shape))
输出
torch.cat dim=0:tensor([[[ 0, 1],
[ 2, 3]],
[[ 4, 5],
[ 6, 7]],
[[ 8, 9],
[10, 11]],
[[12, 13],
[14, 15]],
[[16, 17],
[18, 19]],
[[20, 21],
[22, 23]],
[[24, 25],
[26, 27]],
[[28, 29],
[30, 31]]]),torch.Size([8, 2, 2])
torch.cat dim=1:tensor([[[ 0, 1],
[ 2, 3],
[ 8, 9],
[10, 11],
[16, 17],
[18, 19],
[24, 25],
[26, 27]],
[[ 4, 5],
[ 6, 7],
[12, 13],
[14, 15],
[20, 21],
[22, 23],
[28, 29],
[30, 31]]]),torch.Size([2, 8, 2])
torch.cat dim=2:tensor([[[ 0, 1, 8, 9, 16, 17, 24, 25],
[ 2, 3, 10, 11, 18, 19, 26, 27]],
[[ 4, 5, 12, 13, 20, 21, 28, 29],
[ 6, 7, 14, 15, 22, 23, 30, 31]]]),torch.Size([2, 2, 8])
本文作者:StubbornHuang
版权声明:本文为站长原创文章,如果转载请注明原文链接!
原文标题:Pytorch – torch.cat参数详解与使用
原文链接:https://www.stubbornhuang.com/2216/
发布于:2022年07月25日 11:23:32
修改于:2023年06月25日 20:51:13
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。
评论
50