深度学习 – 基础的Greedy Search和Beam Search算法的Python实现
假设当前词汇表中总共有5个词汇,现在有一个概率矩阵需要解码为词序列,词序列中包含10个词,以下通过Greedy Search Decoder和Beam Search Decoder对该词序列分别进行解码。
1 Greedy Search
import numpy as np
# greedy decoder
def greedy_decoder(data):
# 每行最多的概率值索引
return [np.argmax(s) for s in data]
if __name__ == '__main__':
data = [[0.1, 0.2, 0.3, 0.4, 0.5],
[0.5, 0.4, 0.3, 0.2, 0.1],
[0.1, 0.2, 0.3, 0.4, 0.5],
[0.5, 0.4, 0.3, 0.2, 0.1],
[0.1, 0.2, 0.3, 0.4, 0.5],
[0.5, 0.4, 0.3, 0.2, 0.1],
[0.1, 0.2, 0.3, 0.4, 0.5],
[0.5, 0.4, 0.3, 0.2, 0.1],
[0.1, 0.2, 0.3, 0.4, 0.5],
[0.5, 0.4, 0.3, 0.2, 0.1]]
data = np.array(data)
result = greedy_decoder(data)
print(result)
输出
[4, 0, 4, 0, 4, 0, 4, 0, 4, 0]
2 Beam Search
from math import log
import numpy as np
# beam search
def beam_search_decoder(data, beam_size):
sequences = [[list(), 0.0]]
# 遍历每一个序列
for row in data:
all_candidates = list()
# 在下一个序列中找到候选者
for i in range(len(sequences)):
seq, score = sequences[i]
for j in range(len(row)):
candidate = [seq + [j], score - log(row[j])]
all_candidates.append(candidate)
# 根据分数排序所有的候选者
ordered = sorted(all_candidates, key=lambda tup:tup[1])
# 选择beam_size个最大的
sequences = ordered[:beam_size]
return sequences
if __name__ == '__main__':
data = [[0.1, 0.2, 0.3, 0.4, 0.5],
[0.5, 0.4, 0.3, 0.2, 0.1],
[0.1, 0.2, 0.3, 0.4, 0.5],
[0.5, 0.4, 0.3, 0.2, 0.1],
[0.1, 0.2, 0.3, 0.4, 0.5],
[0.5, 0.4, 0.3, 0.2, 0.1],
[0.1, 0.2, 0.3, 0.4, 0.5],
[0.5, 0.4, 0.3, 0.2, 0.1],
[0.1, 0.2, 0.3, 0.4, 0.5],
[0.5, 0.4, 0.3, 0.2, 0.1]]
data = np.array(data)
result = beam_search_decoder(data,3)
for seq in result:
print(seq)
输出
[[4, 0, 4, 0, 4, 0, 4, 0, 4, 0], 6.931471805599453]
[[4, 0, 4, 0, 4, 0, 4, 0, 4, 1], 7.154615356913663]
[[4, 0, 4, 0, 4, 0, 4, 0, 3, 0], 7.154615356913663]
本文作者:StubbornHuang
版权声明:本文为站长原创文章,如果转载请注明原文链接!
原文标题:深度学习 – 基础的Greedy Search和Beam Search算法的Python实现
原文链接:https://www.stubbornhuang.com/2219/
发布于:2022年07月18日 9:37:36
修改于:2023年06月25日 20:53:40
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。
评论
52