深度学习 – Transformer详细注释
译自:
https://nlp.seas.harvard.edu/2018/04/03/attention.html
http://nlp.seas.harvard.edu/annotated-transformer/
在过去的五年里,Transformer一直被很多多关注。本篇文章以逐行实现并详细注释了Transformer的代码。本文的完整代码可从此处获取:https://github.com/harvardnlp/annotated-transformer/。
1 背景 Background
扩展神经GPU、ByteNet和Convs2都希望减少顺序计算,它们都使用卷积神经网络作为基本构建块,并行计算所有输入和输出位置的隐藏表示。在这些模型中,将来自两个任意输入或输出位置的信号关联起来所需的操作数随着位置之间的距离而增加,对于convs2呈线性增长,对于ByteNet呈对数增长。这使得学习较远位置之间的依赖关系更加困难。在Transformer中,这被减少到恒定数量的操作,尽管由于平均注意力加权位置而降低了有效性,但是我们用多头注意力抵消了这种影响。
自注意力是一种注意力机制,有时也称为内部注意力,这种机制将单个序列中的不同位置进行关联用于表示序列特征。自注意力机制已经在多个领域得到了应用,包括阅读理解、摘要等。端到端的记忆网络基于循环注意机制,而不是序列对齐的循环,并且在简单的语言问答和语言建模中表现良好。
但是,据我们所指,Transformer是第一个完全依赖自注意力机制计算输入与输出表示的模型,在其中没有使用RNN或者CNN。
2 模型结构 Model Architecture
2.1 Model Architecture
大多数的竞争性神经序列转换模型都有编码器-解码器结构。编码器将输入序列(x_{1},...,x_{n})映射为序列z=(z_{1},...,z_{n}),然后解码器将序列z的进行解码生成输出序列(y_{1},...,y_{m})。在每一个步骤中,模型都是自动回归的,在生成当前符号时将之前生成的符号作为额外输入。
class EncoderDecoder(nn.Module):
"""
A standard Encoder-Decoder architecture. Base for this and many
other models.
"""
def __init__(self, encoder, decoder, src_embed, tgt_embed, generator):
super(EncoderDecoder, self).__init__()
self.encoder = encoder
self.decoder = decoder
self.src_embed = src_embed
self.tgt_embed = tgt_embed
self.generator = generator
def forward(self, src, tgt, src_mask, tgt_mask):
"Take in and process masked src and target sequences."
return self.decode(self.encode(src, src_mask), src_mask, tgt, tgt_mask)
def encode(self, src, src_mask):
return self.encoder(self.src_embed(src), src_mask)
def decode(self, memory, src_mask, tgt, tgt_mask):
return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask)
class Generator(nn.Module):
"Define standard linear + softmax generation step."
def __init__(self, d_model, vocab):
super(Generator, self).__init__()
self.proj = nn.Linear(d_model, vocab)
def forward(self, x):
return log_softmax(self.proj(x), dim=-1)
Transformer的总体架构如下图所示,
2.2 Encoder and Decoder Stacks
2.2.1 Encoder
编码器由N=6相同的子编码层组成。
def clones(module, N):
"Produce N identical layers."
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
class Encoder(nn.Module):
"Core encoder is a stack of N layers"
def __init__(self, layer, N):
super(Encoder, self).__init__()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.size)
def forward(self, x, mask):
"Pass the input (and mask) through each layer in turn."
for layer in self.layers:
x = layer(x, mask)
return self.norm(x)
在两个子编码器层的每个层周围使用残差连接,然后使用层归一化。
class LayerNorm(nn.Module):
"Construct a layernorm module (See citation for details)."
def __init__(self, features, eps=1e-6):
super(LayerNorm, self).__init__()
self.a_2 = nn.Parameter(torch.ones(features))
self.b_2 = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
也就是说,每个自编码器层的输出为LayerNorm(x+Sublayer(x)),其中Sublayer(x)是每一个子层自身实现的功能。在添加子层输出以及层归一化之前,我们对每个子层的输出应用dropout操作。
为了促进这些残差连接,模型中的每一个子层和embedding层都会生成对应维数d_{model} = 512的输出。
class SublayerConnection(nn.Module):
"""
A residual connection followed by a layer norm.
Note for code simplicity the norm is first as opposed to last.
"""
def __init__(self, size, dropout):
super(SublayerConnection, self).__init__()
self.norm = LayerNorm(size)
self.dropout = nn.Dropout(dropout)
def forward(self, x, sublayer):
"Apply residual connection to any sublayer with the same size."
return x + self.dropout(sublayer(self.norm(x)))
每个编码器层都有两个子层,一个是多头自注意力层,另一个是简单的位置全连接前馈网络层。
class EncoderLayer(nn.Module):
"Encoder is made up of self-attn and feed forward (defined below)"
def __init__(self, size, self_attn, feed_forward, dropout):
super(EncoderLayer, self).__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.sublayer = clones(SublayerConnection(size, dropout), 2)
self.size = size
def forward(self, x, mask):
"Follow Figure 1 (left) for connections."
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
return self.sublayer[1](x, self.feed_forward)
2.2.2 Decoder
Decoder解码器同样由N=6相同的子编码层组成。
class Decoder(nn.Module):
"Generic N layer decoder with masking."
def __init__(self, layer, N):
super(Decoder, self).__init__()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.size)
def forward(self, x, memory, src_mask, tgt_mask):
for layer in self.layers:
x = layer(x, memory, src_mask, tgt_mask)
return self.norm(x)
除了编码器中的多头自注意力层和位置全连接前馈网络层之外,解码器还插入了第三个子层,该子层对编码器堆栈的输出执行多头注意。与编码器类似,我们在每个子层的周围使用残差连接,然后进行层归一化。
class DecoderLayer(nn.Module):
"Decoder is made of self-attn, src-attn, and feed forward (defined below)"
def __init__(self, size, self_attn, src_attn, feed_forward, dropout):
super(DecoderLayer, self).__init__()
self.size = size
self.self_attn = self_attn
self.src_attn = src_attn
self.feed_forward = feed_forward
self.sublayer = clones(SublayerConnection(size, dropout), 3)
def forward(self, x, memory, src_mask, tgt_mask):
"Follow Figure 1 (right) for connections."
m = memory
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask))
x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask))
return self.sublayer[2](x, self.feed_forward)
我们还修改了解码器堆栈中的自注意力层,以防止当前位置受后续位置的影响。因为输出的embedding通常偏移了一个位置,这种mask可以确保位置i的预测只依赖于位置i之前的输出。
def subsequent_mask(size):
"Mask out subsequent positions."
attn_shape = (1, size, size)
subsequent_mask = torch.triu(torch.ones(attn_shape), diagonal=1).type(
torch.uint8
)
return subsequent_mask == 0
下方的mask图显示每个目标单词(行)可以查看的列的位置,这表明了在训练时,当前词不会受到之后单词的影响。
def example_mask():
LS_data = pd.concat(
[
pd.DataFrame(
{
"Subsequent Mask": subsequent_mask(20)[0][x, y].flatten(),
"Window": y,
"Masking": x,
}
)
for y in range(20)
for x in range(20)
]
)
return (
alt.Chart(LS_data)
.mark_rect()
.properties(height=250, width=250)
.encode(
alt.X("Window:O"),
alt.Y("Masking:O"),
alt.Color("Subsequent Mask:Q", scale=alt.Scale(scheme="viridis")),
)
.interactive()
)
show_example(example_mask)
2.2.3 Attention
注意力函数可以理解为将query和一组key-value键值对映射到输出,其中query、keys、values和output都是向量。输出output为value的加权和,其中每个value的权重为query与相应的key进行计算。
我们将我们的特别注意力称为“缩放点积注意力”。输入由维度为d_{k}的queries和keys以及维度为d_{v}的values组成。我们计算所有keys的query的点积,然后将每个点积除以\sqrt{d_{k}},最后使用softmax函数计算values的权重。
在实践中,我们同时计算一组queries的注意力函数,并将其打包成一个矩阵Q。然后将keys打包成一个矩阵K,将values打包成一个矩阵V。我们通过以下公式计算输出矩阵:
def attention(query, key, value, mask=None, dropout=None):
"Compute 'Scaled Dot Product Attention'"
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
p_attn = scores.softmax(dim=-1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn
两种最常用的注意力函数为加法注意力与点积(乘法)注意力。点积注意力大部分地方与我们使用的相同,只不过我们使用的比例因子为\sqrt{d_{k}}。加法注意力使用具有单个隐藏层的前馈网络计算。虽然两者在理论复杂度上相似,但由于可以使用高度优化的矩阵乘法代码进行实现,所以点积注意力在实际应用速度更快并更加节省内存空间。
对于d_{k}值较小的情况,这两种注意函数表现类似,但是d_{k}值较大时,在不进行缩放的情况下,加法注意力优于点积注意力。我们怀疑,当d_{k}值较大时,点积数值增长很大,然后softmax函数值被计算到梯度非常小的区域(为了说明点积变大的原因,假设q和k为独立的随机变量,平均值为0,方差为1)。然后他们的点积q\cdot k = {\textstyle \sum_{i=1}^{d_{k}}} q_{i}k_{i}的平均值为0,方差为d_{k}。为了抵消这种影响,我们除以\sqrt{d_{k}}进行点积缩放。
多头注意力机制允许模型在不同位置联合注意来自不同表示子空间的信息。对于单个注意力头,平均会抑制这一点。
其中,
其中W_{i}^{Q} \in R^{d_{model}\times d_{k}}、W_{i}^{K} \in R^{d_{model}\times d_{k}}、W_{i}^{V} \in R^{d_{model}\times d_{v}}、W^{O} \in R^{hd_{v}\times d_{model}}都为参数矩阵。
在这项工作中我们采用了h=8个并行的注意力层或者头部。对于每一层,我们设置d_{k} = d_{v} = d_{model}/d_{h} = 64。由于每个头部的维数降低,总计算成本与全维单头部注意力的计算成本相似。
class MultiHeadedAttention(nn.Module):
def __init__(self, h, d_model, dropout=0.1):
"Take in model size and number of heads."
super(MultiHeadedAttention, self).__init__()
assert d_model % h == 0
# We assume d_v always equals d_k
self.d_k = d_model // h
self.h = h
self.linears = clones(nn.Linear(d_model, d_model), 4)
self.attn = None
self.dropout = nn.Dropout(p=dropout)
def forward(self, query, key, value, mask=None):
"Implements Figure 2"
if mask is not None:
# Same mask applied to all h heads.
mask = mask.unsqueeze(1)
nbatches = query.size(0)
# 1) Do all the linear projections in batch from d_model => h x d_k
query, key, value = [
lin(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
for lin, x in zip(self.linears, (query, key, value))
]
# 2) Apply attention on all the projected vectors in batch.
x, self.attn = attention(
query, key, value, mask=mask, dropout=self.dropout
)
# 3) "Concat" using a view and apply a final linear.
x = (
x.transpose(1, 2)
.contiguous()
.view(nbatches, -1, self.h * self.d_k)
)
del query
del key
del value
return self.linears[-1](x)
2.2.3 Applications of Attention in our Model
Transformer以三种不同的方式使用多头注意力层:
- 在encoder-decoder attention层中,前一个解码器层的queries,编码器输出的keys和values。这使得编码器中每个位置都可以覆盖输入序列中的所有位置。
- 编码器包含自注意力层。在自注意力层中,所有keys、values和queries都来自同一个位置,在这种情况下,编码器中前一层的输出。编码器中的每个位置都可以关注编码器前一层中的所有位置。
- 类似地,解码器中的自注意力层允许解码器中的每个位置注意解码器中直到并包括该位置的所有位置。我们需要防止译码器中的信息向左流动,以保持自回归特性。
2.3 Position-wise Feed-Forward Networks
除了注意力子层之外,我们的编码器和解码器中的每一层都包含一个完全连接的前馈网络,该网络分别相同地应用于每个位置。这包括两个线性变换,中间有ReLU激活。
虽然线性变换在不同位置上是相同的,但它们在层与层之间使用不同的参数。另一种描述方法是将其描述为内核大小为1的两个卷积。输入和输出的维度为d_{model} = 512,内部层的维度为d_{ff} = 2048。
class PositionwiseFeedForward(nn.Module):
"Implements FFN equation."
def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.w_2(self.dropout(self.w_1(x).relu()))
2.4 Embeddings and Softmax
与其它序列转换模型相似,我们使用embedding将输入tokens和输出tokens转换为维度为d_{model}的向量。我们还使用线性变换和softmax函数将解码器输出转换为预测的下一个令牌概率。在我们的模型中,我们在两个embedding层和pre-softmax线性变换之间共享相同的权重矩阵。在embedding层,我们将权重乘以\sqrt{d_{model}}。
class Embeddings(nn.Module):
def __init__(self, d_model, vocab):
super(Embeddings, self).__init__()
self.lut = nn.Embedding(vocab, d_model)
self.d_model = d_model
def forward(self, x):
return self.lut(x) * math.sqrt(self.d_model)
2.5 Positional Encoding
由于我们的模型不包含递归和卷积,为了使模型利用序列的顺序,我们必须注入一些关于令牌在序列中的相对或绝对位置的信息。为此,我们将“positional encoding”添加到编码器和解码器堆栈底部的输入嵌入中。位置编码拥有与embedding相同的维度,所以这两者可以相加。目前有很多位置编码可以进行选择,比如可学习的与固定的。
在这项工作中,我们使用不同频率的正弦和余弦函数:
P E_{(p o s, 2 i)}=\sin \left(p o s / 10000^{2 i / d_{\text {model }}}\right) \\
P E_{(p o s, 2 i+1)}=\cos \left(p o s / 10000^{2 i / d_{\text {model }}}\right)
\end{array}
其中,pos为位置,i为维度。也就是说,位置编码的每个维度对应于一个正弦。波长形成从2\pi到10000 \cdot 2\pi的几何级数。我们之所以选择这个函数,是因为我们假设它可以让模型轻松地通过相对位置学习参与,对于任意固定偏移量k,PE_{pos+k}可以表示为PE_{pos}的线性函数。
此外,我们对编码器和解码器堆栈中的嵌入和位置编码的总和应用了dropout。对于基础模型,我们设置dropout rateP_{drop} = 0.1。
class PositionalEncoding(nn.Module):
"Implement the PE function."
def __init__(self, d_model, dropout, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
# Compute the positional encodings once in log space.
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model)
)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer("pe", pe)
def forward(self, x):
x = x + self.pe[:, : x.size(1)].requires_grad_(False)
return self.dropout(x)
下面的位置编码将根据位置添加正弦波。每个维度的波的频率和偏移量都不同。
def example_positional():
pe = PositionalEncoding(20, 0)
y = pe.forward(torch.zeros(1, 100, 20))
data = pd.concat(
[
pd.DataFrame(
{
"embedding": y[0, :, dim],
"dimension": dim,
"position": list(range(100)),
}
)
for dim in [4, 5, 6, 7]
]
)
return (
alt.Chart(data)
.mark_line()
.properties(width=800)
.encode(x="position", y="embedding", color="dimension:N")
.interactive()
)
show_example(example_positional)
我们还使用可学习的位置嵌入进行了实验,发现这两个版本产生了几乎相同的结果。我们选择正弦版本,因为它可能允许模型外推到比训练期间遇到的序列长度更长的序列长度。
2.6 Full Model
在这里,我们定义了一个从超参数到完整模型的函数。
def make_model(
src_vocab, tgt_vocab, N=6, d_model=512, d_ff=2048, h=8, dropout=0.1
):
"Helper: Construct a model from hyperparameters."
c = copy.deepcopy
attn = MultiHeadedAttention(h, d_model)
ff = PositionwiseFeedForward(d_model, d_ff, dropout)
position = PositionalEncoding(d_model, dropout)
model = EncoderDecoder(
Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N),
Decoder(DecoderLayer(d_model, c(attn), c(attn), c(ff), dropout), N),
nn.Sequential(Embeddings(d_model, src_vocab), c(position)),
nn.Sequential(Embeddings(d_model, tgt_vocab), c(position)),
Generator(d_model, tgt_vocab),
)
# This was important from their code.
# Initialize parameters with Glorot / fan_avg.
for p in model.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
return model
2.7 Inference
在这里,我们向前迈出了一步,以生成模型的预测。我们试着用我们的Transformer来记忆输入。正如您将看到的,由于模型尚未训练,因此输出是随机生成的。在下一个教程中,我们将构建训练函数,并尝试训练我们的模型来记忆从1到10的数字。
def inference_test():
test_model = make_model(11, 11, 2)
test_model.eval()
src = torch.LongTensor([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]])
src_mask = torch.ones(1, 1, 10)
memory = test_model.encode(src, src_mask)
ys = torch.zeros(1, 1).type_as(src)
for i in range(9):
out = test_model.decode(
memory, src_mask, ys, subsequent_mask(ys.size(1)).type_as(src.data)
)
prob = test_model.generator(out[:, -1])
_, next_word = torch.max(prob, dim=1)
next_word = next_word.data[0]
ys = torch.cat(
[ys, torch.empty(1, 1).type_as(src.data).fill_(next_word)], dim=1
)
print("Example Untrained Model Prediction:", ys)
def run_tests():
for _ in range(10):
inference_test()
show_example(run_tests)
Example Untrained Model Prediction: tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
Example Untrained Model Prediction: tensor([[0, 3, 4, 4, 4, 4, 4, 4, 4, 4]])
Example Untrained Model Prediction: tensor([[ 0, 10, 10, 10, 3, 2, 5, 7, 9, 6]])
Example Untrained Model Prediction: tensor([[ 0, 4, 3, 6, 10, 10, 2, 6, 2, 2]])
Example Untrained Model Prediction: tensor([[ 0, 9, 0, 1, 5, 10, 1, 5, 10, 6]])
Example Untrained Model Prediction: tensor([[ 0, 1, 5, 1, 10, 1, 10, 10, 10, 10]])
Example Untrained Model Prediction: tensor([[ 0, 1, 10, 9, 9, 9, 9, 9, 1, 5]])
Example Untrained Model Prediction: tensor([[ 0, 3, 1, 5, 10, 10, 10, 10, 10, 10]])
Example Untrained Model Prediction: tensor([[ 0, 3, 5, 10, 5, 10, 4, 2, 4, 2]])
Example Untrained Model Prediction: tensor([[0, 5, 6, 2, 5, 6, 2, 6, 2, 2]])
3 Model Training
3.1 Training
本节将描述我们模型的训练机制。
我们停下来快速插曲,介绍培训标准编码器-解码器模型所需的一些工具。首先,我们定义一个批处理对象,该对象包含src和target句子,用于训练,以及构造掩码。
3.1.1 Batches and Masking
class Batch:
"""Object for holding a batch of data with mask during training."""
def __init__(self, src, tgt=None, pad=2): # 2 = <blank>
self.src = src
self.src_mask = (src != pad).unsqueeze(-2)
if tgt is not None:
self.tgt = tgt[:, :-1]
self.tgt_y = tgt[:, 1:]
self.tgt_mask = self.make_std_mask(self.tgt, pad)
self.ntokens = (self.tgt_y != pad).data.sum()
@staticmethod
def make_std_mask(tgt, pad):
"Create a mask to hide padding and future words."
tgt_mask = (tgt != pad).unsqueeze(-2)
tgt_mask = tgt_mask & subsequent_mask(tgt.size(-1)).type_as(
tgt_mask.data
)
return tgt_mask
3.1.2 Training Loop
接下来,我们创建一个通用的训练和评分函数来跟踪损失。我们传入了一个通用的损失计算函数,该函数还处理参数更新。
class TrainState:
"""Track number of steps, examples, and tokens processed"""
step: int = 0 # Steps in the current epoch
accum_step: int = 0 # Number of gradient accumulation steps
samples: int = 0 # total # of examples used
tokens: int = 0 # total # of tokens processed
def run_epoch(
data_iter,
model,
loss_compute,
optimizer,
scheduler,
mode="train",
accum_iter=1,
train_state=TrainState(),
):
"""Train a single epoch"""
start = time.time()
total_tokens = 0
total_loss = 0
tokens = 0
n_accum = 0
for i, batch in enumerate(data_iter):
out = model.forward(
batch.src, batch.tgt, batch.src_mask, batch.tgt_mask
)
loss, loss_node = loss_compute(out, batch.tgt_y, batch.ntokens)
# loss_node = loss_node / accum_iter
if mode == "train" or mode == "train+log":
loss_node.backward()
train_state.step += 1
train_state.samples += batch.src.shape[0]
train_state.tokens += batch.ntokens
if i % accum_iter == 0:
optimizer.step()
optimizer.zero_grad(set_to_none=True)
n_accum += 1
train_state.accum_step += 1
scheduler.step()
total_loss += loss
total_tokens += batch.ntokens
tokens += batch.ntokens
if i % 40 == 1 and (mode == "train" or mode == "train+log"):
lr = optimizer.param_groups[0]["lr"]
elapsed = time.time() - start
print(
(
"Epoch Step: %6d | Accumulation Step: %3d | Loss: %6.2f "
+ "| Tokens / Sec: %7.1f | Learning Rate: %6.1e"
)
% (i, n_accum, loss / batch.ntokens, tokens / elapsed, lr)
)
start = time.time()
tokens = 0
del loss
del loss_node
return total_loss / total_tokens, train_state
3.1.3 Training Data and Batching
我们在标准WMT 2014英语-德语数据集上进行了训练,该数据集由大约450万个句子对组成。使用字节对编码对句子进行编码,该编码具有约37000个令牌的共享源-目标词汇表。对于英语-法语,我们使用了更大的WMT 2014英语-法语数据集,该数据集由3600万个句子组成,并将标记拆分为32000个单词词汇量。
句子对按近似序列长度进行批处理。每个训练批包含一组句子对,其中包含约25000个源标记和25000个目标标记。
3.1.4 Hardware and Schedule
我们用8个NVIDIA P100 GPU在一台机器上训练我们的模型。对于使用本文中描述的超参数的基础模型,每个训练步骤大约需要0.4秒。我们对基础模型进行了总共100000步或12小时的训练。对于我们的大型模型,步长为1.0秒。大模型训练了300000步(3.5天)。
3.1.5 Optimizer
我们是用了Adam optimizer,具体的参数为\beta_{1} = 0.9,\beta_{2} = 0.98,\epsilon = 10^{-9}。
我们根据下列公式在培训过程中改变了学习率:
学习率在以线性增长的速度增长到warmupsteps,然后按步长的平方反根成反比例减少,我们设置warmupsteps = 4000。
不同模型尺寸和优化超参数的该模型曲线示例。
def rate(step, model_size, factor, warmup):
"""
we have to default the step to 1 for LambdaLR function
to avoid zero raising to negative power.
"""
if step == 0:
step = 1
return factor * (
model_size ** (-0.5) * min(step ** (-0.5), step * warmup ** (-1.5))
)
def example_learning_schedule():
opts = [
[512, 1, 4000], # example 1
[512, 1, 8000], # example 2
[256, 1, 4000], # example 3
]
dummy_model = torch.nn.Linear(1, 1)
learning_rates = []
# we have 3 examples in opts list.
for idx, example in enumerate(opts):
# run 20000 epoch for each example
optimizer = torch.optim.Adam(
dummy_model.parameters(), lr=1, betas=(0.9, 0.98), eps=1e-9
)
lr_scheduler = LambdaLR(
optimizer=optimizer, lr_lambda=lambda step: rate(step, *example)
)
tmp = []
# take 20K dummy training steps, save the learning rate at each step
for step in range(20000):
tmp.append(optimizer.param_groups[0]["lr"])
optimizer.step()
lr_scheduler.step()
learning_rates.append(tmp)
learning_rates = torch.tensor(learning_rates)
# Enable altair to handle more than 5000 rows
alt.data_transformers.disable_max_rows()
opts_data = pd.concat(
[
pd.DataFrame(
{
"Learning Rate": learning_rates[warmup_idx, :],
"model_size:warmup": ["512:4000", "512:8000", "256:4000"][
warmup_idx
],
"step": range(20000),
}
)
for warmup_idx in [0, 1, 2]
]
)
return (
alt.Chart(opts_data)
.mark_line()
.properties(width=600)
.encode(x="step", y="Learning Rate", color="model_size:warmup:N")
.interactive()
)
example_learning_schedule()
3.1.6 Regularization
在训练期间,我们采用了\varepsilon_{ls}=0.1的标签平滑。这令人困惑,因为模型学会了更不确定,但提高了准确性和BLEU分数。
3.2 A First Example
我们可以先尝试一个简单的复制任务。给定一个小词汇表中的随机输入符号集,目标是生成相同的符号。
3.2.1 Synthetic Data
def data_gen(V, batch_size, nbatches):
"Generate random data for a src-tgt copy task."
for i in range(nbatches):
data = torch.randint(1, V, size=(batch_size, 10))
data[:, 0] = 1
src = data.requires_grad_(False).clone().detach()
tgt = data.requires_grad_(False).clone().detach()
yield Batch(src, tgt, 0)
3.2.2 Loss Computation
class SimpleLossCompute:
"A simple loss compute and train function."
def __init__(self, generator, criterion):
self.generator = generator
self.criterion = criterion
def __call__(self, x, y, norm):
x = self.generator(x)
sloss = (
self.criterion(
x.contiguous().view(-1, x.size(-1)), y.contiguous().view(-1)
)
/ norm
)
return sloss.data * norm, sloss
3.2.3 Greedy Decoding
为了简单起见,该代码使用贪婪解码预测翻译。
def greedy_decode(model, src, src_mask, max_len, start_symbol):
memory = model.encode(src, src_mask)
ys = torch.zeros(1, 1).fill_(start_symbol).type_as(src.data)
for i in range(max_len - 1):
out = model.decode(
memory, src_mask, ys, subsequent_mask(ys.size(1)).type_as(src.data)
)
prob = model.generator(out[:, -1])
_, next_word = torch.max(prob, dim=1)
next_word = next_word.data[0]
ys = torch.cat(
[ys, torch.zeros(1, 1).type_as(src.data).fill_(next_word)], dim=1
)
return ys
# Train the simple copy task.
def example_simple_model():
V = 11
criterion = LabelSmoothing(size=V, padding_idx=0, smoothing=0.0)
model = make_model(V, V, N=2)
optimizer = torch.optim.Adam(
model.parameters(), lr=0.5, betas=(0.9, 0.98), eps=1e-9
)
lr_scheduler = LambdaLR(
optimizer=optimizer,
lr_lambda=lambda step: rate(
step, model_size=model.src_embed[0].d_model, factor=1.0, warmup=400
),
)
batch_size = 80
for epoch in range(20):
model.train()
run_epoch(
data_gen(V, batch_size, 20),
model,
SimpleLossCompute(model.generator, criterion),
optimizer,
lr_scheduler,
mode="train",
)
model.eval()
run_epoch(
data_gen(V, batch_size, 5),
model,
SimpleLossCompute(model.generator, criterion),
DummyOptimizer(),
DummyScheduler(),
mode="eval",
)[0]
model.eval()
src = torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]])
max_len = src.shape[1]
src_mask = torch.ones(1, 1, max_len)
print(greedy_decode(model, src, src_mask, max_len=max_len, start_symbol=0))
# execute_example(example_simple_model)
4 A Real World Example
现在,我们考虑一个使用Multi30k德英翻译任务的真实示例。该任务比本文考虑的WMT任务小得多,但它说明了整个系统。我们还展示了如何使用多gpu处理使其真正快速。
4.1 Data Loading
我们将使用torchtext和spacy加载数据集并进行标记。
# Load spacy tokenizer models, download them if they haven't been
# downloaded already
def load_tokenizers():
try:
spacy_de = spacy.load("de_core_news_sm")
except IOError:
os.system("python -m spacy download de_core_news_sm")
spacy_de = spacy.load("de_core_news_sm")
try:
spacy_en = spacy.load("en_core_web_sm")
except IOError:
os.system("python -m spacy download en_core_web_sm")
spacy_en = spacy.load("en_core_web_sm")
return spacy_de, spacy_en
def tokenize(text, tokenizer):
return [tok.text for tok in tokenizer.tokenizer(text)]
def yield_tokens(data_iter, tokenizer, index):
for from_to_tuple in data_iter:
yield tokenizer(from_to_tuple[index])
def build_vocabulary(spacy_de, spacy_en):
def tokenize_de(text):
return tokenize(text, spacy_de)
def tokenize_en(text):
return tokenize(text, spacy_en)
print("Building German Vocabulary ...")
train, val, test = datasets.Multi30k(language_pair=("de", "en"))
vocab_src = build_vocab_from_iterator(
yield_tokens(train + val + test, tokenize_de, index=0),
min_freq=2,
specials=["<s>", "</s>", "<blank>", "<unk>"],
)
print("Building English Vocabulary ...")
train, val, test = datasets.Multi30k(language_pair=("de", "en"))
vocab_tgt = build_vocab_from_iterator(
yield_tokens(train + val + test, tokenize_en, index=1),
min_freq=2,
specials=["<s>", "</s>", "<blank>", "<unk>"],
)
vocab_src.set_default_index(vocab_src["<unk>"])
vocab_tgt.set_default_index(vocab_tgt["<unk>"])
return vocab_src, vocab_tgt
def load_vocab(spacy_de, spacy_en):
if not exists("vocab.pt"):
vocab_src, vocab_tgt = build_vocabulary(spacy_de, spacy_en)
torch.save((vocab_src, vocab_tgt), "vocab.pt")
else:
vocab_src, vocab_tgt = torch.load("vocab.pt")
print("Finished.\nVocabulary sizes:")
print(len(vocab_src))
print(len(vocab_tgt))
return vocab_src, vocab_tgt
if is_interactive_notebook():
# global variables used later in the script
spacy_de, spacy_en = show_example(load_tokenizers)
vocab_src, vocab_tgt = show_example(load_vocab, args=[spacy_de, spacy_en])
Finished.
Vocabulary sizes:
59981
36745
4.2 Iterators
配对速度至关重要。我们想要非常均匀地分配批次,并且具有绝对最小的填充。为此,我们必须稍微绕过默认的torchtext批处理。这段代码修补了它们的默认批处理,以确保我们搜索足够多的句子来找到紧密的批处理。
def collate_batch(
batch,
src_pipeline,
tgt_pipeline,
src_vocab,
tgt_vocab,
device,
max_padding=128,
pad_id=2,
):
bs_id = torch.tensor([0], device=device) # <s> token id
eos_id = torch.tensor([1], device=device) # </s> token id
src_list, tgt_list = [], []
for (_src, _tgt) in batch:
processed_src = torch.cat(
[
bs_id,
torch.tensor(
src_vocab(src_pipeline(_src)),
dtype=torch.int64,
device=device,
),
eos_id,
],
0,
)
processed_tgt = torch.cat(
[
bs_id,
torch.tensor(
tgt_vocab(tgt_pipeline(_tgt)),
dtype=torch.int64,
device=device,
),
eos_id,
],
0,
)
src_list.append(
# warning - overwrites values for negative values of padding - len
pad(
processed_src,
(
0,
max_padding - len(processed_src),
),
value=pad_id,
)
)
tgt_list.append(
pad(
processed_tgt,
(0, max_padding - len(processed_tgt)),
value=pad_id,
)
)
src = torch.stack(src_list)
tgt = torch.stack(tgt_list)
return (src, tgt)
def create_dataloaders(
device,
vocab_src,
vocab_tgt,
spacy_de,
spacy_en,
batch_size=12000,
max_padding=128,
is_distributed=True,
):
# def create_dataloaders(batch_size=12000):
def tokenize_de(text):
return tokenize(text, spacy_de)
def tokenize_en(text):
return tokenize(text, spacy_en)
def collate_fn(batch):
return collate_batch(
batch,
tokenize_de,
tokenize_en,
vocab_src,
vocab_tgt,
device,
max_padding=max_padding,
pad_id=vocab_src.get_stoi()["<blank>"],
)
train_iter, valid_iter, test_iter = datasets.Multi30k(
language_pair=("de", "en")
)
train_iter_map = to_map_style_dataset(
train_iter
) # DistributedSampler needs a dataset len()
train_sampler = (
DistributedSampler(train_iter_map) if is_distributed else None
)
valid_iter_map = to_map_style_dataset(valid_iter)
valid_sampler = (
DistributedSampler(valid_iter_map) if is_distributed else None
)
train_dataloader = DataLoader(
train_iter_map,
batch_size=batch_size,
shuffle=(train_sampler is None),
sampler=train_sampler,
collate_fn=collate_fn,
)
valid_dataloader = DataLoader(
valid_iter_map,
batch_size=batch_size,
shuffle=(valid_sampler is None),
sampler=valid_sampler,
collate_fn=collate_fn,
)
return train_dataloader, valid_dataloader
4.3 Training the System
def train_worker(
gpu,
ngpus_per_node,
vocab_src,
vocab_tgt,
spacy_de,
spacy_en,
config,
is_distributed=False,
):
print(f"Train worker process using GPU: {gpu} for training", flush=True)
torch.cuda.set_device(gpu)
pad_idx = vocab_tgt["<blank>"]
d_model = 512
model = make_model(len(vocab_src), len(vocab_tgt), N=6)
model.cuda(gpu)
module = model
is_main_process = True
if is_distributed:
dist.init_process_group(
"nccl", init_method="env://", rank=gpu, world_size=ngpus_per_node
)
model = DDP(model, device_ids=[gpu])
module = model.module
is_main_process = gpu == 0
criterion = LabelSmoothing(
size=len(vocab_tgt), padding_idx=pad_idx, smoothing=0.1
)
criterion.cuda(gpu)
train_dataloader, valid_dataloader = create_dataloaders(
gpu,
vocab_src,
vocab_tgt,
spacy_de,
spacy_en,
batch_size=config["batch_size"] // ngpus_per_node,
max_padding=config["max_padding"],
is_distributed=is_distributed,
)
optimizer = torch.optim.Adam(
model.parameters(), lr=config["base_lr"], betas=(0.9, 0.98), eps=1e-9
)
lr_scheduler = LambdaLR(
optimizer=optimizer,
lr_lambda=lambda step: rate(
step, d_model, factor=1, warmup=config["warmup"]
),
)
train_state = TrainState()
for epoch in range(config["num_epochs"]):
if is_distributed:
train_dataloader.sampler.set_epoch(epoch)
valid_dataloader.sampler.set_epoch(epoch)
model.train()
print(f"[GPU{gpu}] Epoch {epoch} Training ====", flush=True)
_, train_state = run_epoch(
(Batch(b[0], b[1], pad_idx) for b in train_dataloader),
model,
SimpleLossCompute(module.generator, criterion),
optimizer,
lr_scheduler,
mode="train+log",
accum_iter=config["accum_iter"],
train_state=train_state,
)
GPUtil.showUtilization()
if is_main_process:
file_path = "%s%.2d.pt" % (config["file_prefix"], epoch)
torch.save(module.state_dict(), file_path)
torch.cuda.empty_cache()
print(f"[GPU{gpu}] Epoch {epoch} Validation ====", flush=True)
model.eval()
sloss = run_epoch(
(Batch(b[0], b[1], pad_idx) for b in valid_dataloader),
model,
SimpleLossCompute(module.generator, criterion),
DummyOptimizer(),
DummyScheduler(),
mode="eval",
)
print(sloss)
torch.cuda.empty_cache()
if is_main_process:
file_path = "%sfinal.pt" % config["file_prefix"]
torch.save(module.state_dict(), file_path)
def train_distributed_model(vocab_src, vocab_tgt, spacy_de, spacy_en, config):
from the_annotated_transformer import train_worker
ngpus = torch.cuda.device_count()
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "12356"
print(f"Number of GPUs detected: {ngpus}")
print("Spawning training processes ...")
mp.spawn(
train_worker,
nprocs=ngpus,
args=(ngpus, vocab_src, vocab_tgt, spacy_de, spacy_en, config, True),
)
def train_model(vocab_src, vocab_tgt, spacy_de, spacy_en, config):
if config["distributed"]:
train_distributed_model(
vocab_src, vocab_tgt, spacy_de, spacy_en, config
)
else:
train_worker(
0, 1, vocab_src, vocab_tgt, spacy_de, spacy_en, config, False
)
def load_trained_model():
config = {
"batch_size": 32,
"distributed": False,
"num_epochs": 8,
"accum_iter": 10,
"base_lr": 1.0,
"max_padding": 72,
"warmup": 3000,
"file_prefix": "multi30k_model_",
}
model_path = "multi30k_model_final.pt"
if not exists(model_path):
train_model(vocab_src, vocab_tgt, spacy_de, spacy_en, config)
model = make_model(len(vocab_src), len(vocab_tgt), N=6)
model.load_state_dict(torch.load("multi30k_model_final.pt"))
return model
if is_interactive_notebook():
model = load_trained_model()
经过训练后,我们可以解码模型以生成一组翻译。这里我们只翻译验证集中的第一句话。这个数据集非常小,因此贪婪搜索的翻译相当准确。
本文作者:StubbornHuang
版权声明:本文为站长原创文章,如果转载请注明原文链接!
原文标题:深度学习 – Transformer详细注释
原文链接:https://www.stubbornhuang.com/2208/
发布于:2022年07月15日 8:59:36
修改于:2024年03月08日 13:46:20
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。
评论
52